
A Pulse-Level DSL for Real-TimeQuantum Control
with Hardware Compilation and Emulation
YU-HSUAN WU, Academia Sinica, Taiwan
YUE SHI, Princeton University, USA
JUNYI LIU, University of Maryland, USA
YUXIANG PENG, Purdue University, USA

Quantum computers are promising for solving classically intractable problems, but their practical
utility hinges on precise, flexible, and accessible programming of quantum control systems. Despite
several pulse-level languages for industrial devices, a systematic and end-to-end programming
toolchain for real-time quantum control remains lacking. We introduce a domain-specific language
(DSL) for pulse scheduling with native real-time control constructs (e.g., feedback, branching, and
pulse updates). The DSL compiles to and executes on radio-frequency system-on-chips, enabling
deterministic timing and hardware portability. To validate behaviors across the stack, we provide
an emulator that co-simulates control hardware and quantum device responses. Together, the DSL,
compiler, and emulator form a cohesive framework that lowers the barrier to implementing robust
control, accelerates architectural design, and supports the development and testing of applications
like quantum error correcting codes.

1 Introduction
Quantum computers promise advantages across domains—from integer factorization with
Shor’s algorithm [17] to quantum chemistry with quantum Hamiltonian simulation [7, 11].
Realizing these applications at useful scales, however, requires fault-tolerant quantum
computing [19], where logical quantum gates are protected by error-correcting codes
[2, 5, 8, 18]. Fault tolerance, in turn, hinges on fast, reliable real-time feedback control of
quantum systems: repeatedly measuring qubits, extracting syndromes, and conditionally
applying corrections to keep logical error rates below threshold.
One prominent property of quantum hardware is the continuous drifting [1, 15]: there

is always a system Hamiltonian driving the evolution of the quantum state, even in the
absence of any control fields. Any delay between operations therefore lands effects different
from the desired. Precise feedback control must, accordingly, fix and account for timing at
fine granularity, including deterministic latencies and synchronized pulse generation. These
guarantees are only expressible at the pulse level, where programs specify waveforms,
phases, and control flows with unambiguous real-time semantics rather than abstract gates.
Despite notable efforts [3, 12, 14, 16], pulse-level languages and toolchains remain

fragmented. Many existing prototypes are designed around specific industrial quantum
hardware and expose only limited, vendor-defined operations for pulse-level features, rarely
real-time control. This leads to three practical issues. First, opaque control hardware hides
critical implementation details, obscuring the design and reason about desired hardware

Authors’ Contact Information: Yu-Hsuan Wu, Academia Sinica, Taiwan, maxyhwu@iis.sinica.edu.tw; Yue Shi,
Princeton University, USA, ys2251@princeton.edu; Junyi Liu, University of Maryland, USA, junyiliu@umd.edu;
Yuxiang Peng, Purdue University, USA, yxpeng@purdue.edu.

2 Yu-Hsuan Wu, Yue Shi, Junyi Liu, and Yuxiang Peng

behaviors. Second, ambiguous language constructs hinder programming: programmers can-
not reason rigorously about timing determinism, concurrency, or feedback latency. Third,
vendor-specific software can deprecate or diverge sorely due to business purposes, derail-
ing reproducibility and cross-hardware experimentation. Pulse-level tools for real-time
quantum control—requiring an open and long-supported hardware—remain underserved.
This reality pushes us to systematically design pulse-level programming languages on

open hardware [4, 6]. To this end, we introduce a domain-specific language (DSL) for pulse
scheduling with native real-time control. Our DSL satisfies several key features: (1) precise
semantics for timing and concurrency on on-chip CPU and pulse generators; (2) first-class
real-time control, including conditional branching, control condition computing, and in-situ
pulse generation; (3) portability across heterogeneous controllers and quantum hardware
via an explicit quantum architecture and general control hardware components.
To execute programs in ourDSL, we provide a compiler towards a radio-frequency system-

on-chip (RFSoC) controller that integrates DAC/ADC and FPGA compute. The compiler
maps high-level constructs to binaries on RISC-Q [10], an instruction set executable on
Xilinx RFSoCs with extremely low latency. Deploying the executable on an RFSoC con-
trolling a quantum hardware, we can precisely orchestrate the evolution of the quantum
system with controls based on intermediate measurements. Our compilation framework is
compatible with controllers like arbitrary wave generators, supported in future works.
Because control hardware and quantum devices are expensive and scarce, we complete

the suite with an emulator that co-simulates the controller and a configurable quantum
device model. This allows rapid prototyping of control programs, debugging and validation
of programs, and testing of real-time behaviors (e.g., latencies and race conditions) before
consuming lab time. The executable compiled from DSL programs can run on both the
emulator and RFSoC hardware, enabling a smooth path from design to deployment.
In summary, this work contributes: (1) a pulse-level DSL for real-time quantum control; (2)

a compiler onto RFSoCs; (3) an emulator co-simulating the control and quantum hardware.

2 Language and Compiler
The core idea of the language design is based on the need for targeting pulse-level pro-
gramming for real-time quantum control systems with dynamic scheduling capability, and
thus resulting a combination of classical controls with essential pulse-level operations.
Figure 1 shows the syntax of the language, while Figure 3a demonstrates what the program
looks like in the two examples presented in Section 4. We would also like to point out
that the delay operation is omitted here, since we take it as a syntactic sugar of the play
operation with a 0 amplitude pulse.

Operational Semantics. We define the semantics of the DSL based on the decoupling of
the CPU time (denoted as 𝑡𝑐) and the Scheduler time (denoted as 𝑡𝑞), as the execution time
of classical operations should not affect the increment on the pulse scheduler clock, while
the reverse way does. This explains the differences in time increment when viewing the
semantics. We follow the “as soon as possible” (ASAP) scheduling scheme between oper-
ations, and two predicates, no-conflict-Qsin for play operation, and no-conflict-Qpar for

A Pulse-Level DSL for Real-TimeQuantum Control with Hardware Compilation and Emulation 3

Identifiers.

𝑝 ∈ PVar 𝑠 ∈ SVar 𝑐ℎ ∈ CVar 𝑑 ∈ TimeVar

𝑟 ∈ RealVar 𝑏 ∈ BoolVar
Types.

𝑇 ::= () | Pulse | Shape | Channel | Time | Real | Bool
Expressions.

𝐸 ::= skip
| 𝑟 := 𝑒𝑎 (assignment)
| 𝐸1 ; 𝐸2 (sequential composition)
| if 𝑐 then 𝐸1 else 𝐸2 (conditional)
| while 𝑐 do 𝐸 (loop)
| define 𝑝 := pulse(𝑠, 𝑟𝑎, 𝑑, 𝑟𝑝 , 𝑟 𝑓)

(shape, amplitude, duration, phase, frequency)
| run𝑄 (run pulse operations)

Arithmetic Expressions.

𝑒𝑎 ::= 𝑛 | 𝑟 | 𝑒𝑎 ⊕ 𝑒𝑎 | −𝑒𝑎 | (𝑒𝑎)
𝑛 ∈ R ⊕ ::= + | − | × | /

Conditions.

𝑐 ::= false | true | 𝑏 | 𝑒𝑎 ⊲⊳ 𝑒𝑎 | ¬𝑐 | 𝑐 ∧ 𝑐 | 𝑐 ∨ 𝑐

⊲⊳ ::= < | > | = | ≠
Pulse Operations.

𝑄 ::= skipQ
| 𝑄1 ;𝑄2 (sequential pulse operations)
| play 𝑐ℎ 𝑝 (play pulse)
| measure 𝑐ℎ 𝑝 → 𝑏 (measurement)
| parQ {𝑄1 ∥ · · · ∥ 𝑄𝑛 } (parallel pulse operations)

Fig. 1. Syntax of the DSL.

parallel operation, are used to guarantee the validity of the schedule. The schedule dynam-
ically updates during runtime and stored in the program state, and the pulse environment
records defined pulses for reuse. Figure 2 shows the remaining details.

Compiler. To execute programs written in our DSL, we implement a compilation frame-
work that targets an RFSoC–based control architecture. Our compiler is based on RISC-Q,
which integrates the memory-map and RISC-V compiler, along with utilizing only the
RV32I and RV32M set. It translates high-level DSL programs into lightweight RISC-Q
binaries, producing executables on Xilinx RFSoCs with extremely low latency.

3 Emulator
To show the usability of our language, we provide a real-time emulator by connecting a
quantum control simulator and a quantum processor simulator using real-time commu-
nication to run compiled binaries. Specifically, we utilize the architecture described in
[10] as the target of the quantum control simulator, since it depicts a minimal but ideal
framework for simulating low-latency quantum control system-on-chips and for displaying
our language prototype, and run the simulation using Verilator [20]. The simulated RISC-V
CPU is set to run at 500 MHz, with DACs running 16x faster at 8 GHz, and ADCs running
at a 4x faster 2 GHz frequency. We provide a DAC drive channel, a DAC measurement
channel, and an ADC channel per qubit.
We adopt QuTiP-QIP [9] package for simulating quantum systems. Multiple backend

quantumhardwaremodels are available throughQuTiP-QIP, andwe leverage the linear spin
chain model as an example: Given 𝜎𝑥𝑖 , 𝜎

𝑦

𝑖
, and 𝜎𝑧

𝑖
as the single-qubit control Hamiltonian,

𝜎𝑥𝑖 𝜎
𝑥
𝑖+1 + 𝜎

𝑦

𝑖
𝜎
𝑦

𝑖+1 as the exchange Hamiltonian for interaction, Ω𝑥
𝑖 ,Ω

𝑦

𝑖
,Ω𝑧

𝑖
, and 𝑔𝑖 as the

control coefficients, and 𝑁 as the number of qubits, the one-dimensional, open-ended chain
layout gives us the control Hamiltonian as 𝐻 =

∑𝑁−1
𝑖=0 Ω𝑥

𝑖 (𝑡)𝜎𝑥𝑖 + Ω
𝑦

𝑖
(𝑡)𝜎𝑦

𝑖
+ Ω𝑧

𝑖
(𝑡)𝜎𝑧

𝑖
+∑𝑁−2

𝑖=0 𝑔𝑖 (𝑡) (𝜎𝑥𝑖 𝜎𝑥𝑖+1 + 𝜎
𝑦

𝑖
𝜎
𝑦

𝑖+1), and by definition, we have Ω𝑥
𝑖 = 𝐸𝑖 cos𝜙𝑖 and Ω

𝑦

𝑖
= 𝐸𝑖 sin𝜙𝑖 ,

where 𝐸𝑖 and 𝜙𝑖 are the envelope and the phase of the control pulse.
The connection between the quantum control simulator and the quantum processor

simulator is via multi-thread FIFOs targeting DACs/ADCs. We also implement a Wait-
Until-Fetch scheme, as the calculation time per batch on the processor side is incomparable

4 Yu-Hsuan Wu, Yue Shi, Junyi Liu, and Yuxiang Peng

Configurations. Program evaluation is defined as:

Γ ⊢ ⟨𝑒, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → Γ′ ⊢ ⟨𝑒′, 𝜎 ′, 𝑡𝑞 ′
, 𝑡𝑐

′ ⟩
where:

• Γ, Γ′ — program context
• 𝑒, 𝑒′ — program expression
• 𝜎 = (𝛾, 𝛿, 𝜋), 𝜎 ′ = (𝛾 ′, 𝛿 ′, 𝜋 ′) — program state:

– 𝛾,𝛾 ′ — classical store, mapping:

RealVar ∪ BoolVar ∪ TimeVar → Real ∪ Bool ∪ Time

– 𝛿, 𝛿 ′ — scheduled pulses:

Channel → [(Pulse, Time × Time)]
– 𝜋, 𝜋 ′ — pulse environment:

PVar → Pulse

• 𝑡𝑞 , 𝑡𝑞 ′ ∈ Time — current Scheduler time
• 𝑡𝑐 , 𝑡𝑐 ′ ∈ Time — current CPU time

Condition Evaluation.

true ⇓ true
false ⇓ false
¬𝑐 ⇓ not (𝑐 ⇓ true)

𝑐1 ∧ 𝑐2 ⇓ true iff 𝑐1 ⇓ true and 𝑐2 ⇓ true
𝑐1 ∨ 𝑐2 ⇓ true iff 𝑐1 ⇓ true or 𝑐2 ⇓ true

Skip. skip is a terminal form and has no transition.

Assignment.

𝑒𝑎 ⇓ 𝑣

Γ ⊢ ⟨𝑟 := 𝑒𝑎, (𝛾, 𝛿, 𝜋), 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨skip, (𝛾 [𝑟 ↦→ 𝑣], 𝛿, 𝜋), 𝑡𝑞 , 𝑡𝑐 ′ ⟩
Sequential Composition.

⟨𝑒1, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑒′1, 𝜎 ′, 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩
Γ ⊢ ⟨𝑒1;𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑒′1;𝑒2, 𝜎 ′, 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩

Γ ⊢ ⟨skip;𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩

If-Else.

𝛾 ⊢ 𝑐 ⇓ true
Γ ⊢ ⟨if 𝑐 then 𝑒1 else 𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑒1, 𝜎, 𝑡𝑞 , 𝑡𝑐 ′ ⟩

𝛾 ⊢ 𝑐 ⇓ false
Γ ⊢ ⟨if 𝑐 then 𝑒1 else 𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑒2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ′ ⟩

While.

Γ ⊢ ⟨while 𝑐 do 𝑒, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩
→ ⟨if 𝑐 then (𝑒 ;while 𝑐 do 𝑒) else skip, 𝜎, 𝑡𝑞 , 𝑡𝑐 ′ ⟩

Define Pulse.

Γ ⊢ ⟨define 𝑝 = pulse(𝑠, 𝑎,𝑑, 𝜙,𝜔), (𝛾, 𝛿, 𝜋), 𝑡𝑞 , 𝑡𝑐 ⟩
→ ⟨skip, (𝛾, 𝛿, 𝜋 [𝑝 ↦→ pulse(𝑠, 𝑎,𝑑, 𝜙,𝜔)]), 𝑡𝑞 , 𝑡𝑐 ′ ⟩

Run Pulse Operations.

Γ ⊢ ⟨run𝑄,𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨skip, 𝜎 ′, 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩
Skip for Pulse Operations. skipQ is a terminal form and has no
transition.

Sequential Pulse Operations.

⟨𝑄1, 𝜎, 𝑡
𝑞 , 𝑡𝑐 ⟩ → ⟨𝑄 ′

1, 𝜎
′, 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩

Γ ⊢ ⟨𝑄1;𝑄2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑄 ′
1;𝑄2, 𝜎 ′, 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩

Γ ⊢ ⟨skipQ ;𝑄2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨𝑄2, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩
Play Pulse.

no-conflict-Qsin (𝛿, 𝑐ℎ, 𝑡1, 𝑡2)
≜ ∀(𝑡𝑠 , 𝑡𝑒) ∈ 𝛿 (𝑐ℎ) s.t. [𝑡1, 𝑡2) ∩ [𝑡𝑠 , 𝑡𝑒) = ∅

𝜋 (𝑝) = pulse(𝑠, 𝑎,𝑑, 𝜙,𝜔) no-conflict-Qsin (𝛿, 𝑐ℎ, 𝑡𝑞 , 𝑡𝑞 ′)
Γ ⊢ ⟨play(𝑐ℎ, 𝑝), (𝛾, 𝛿, 𝜋), 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨skipQ , (𝛾, 𝛿 ′, 𝜋), 𝑡𝑞 ′, 𝑡𝑐 ′ ⟩
where: 𝑡𝑞 ′ = 𝑡𝑞 + 𝑑, 𝛿 ′ = 𝛿 ∪ { (𝑐ℎ, 𝑝, 𝑡𝑞 , 𝑡𝑞 ′) }

Parallel Pulse Operations.
no-conflict-Qpar (𝛿𝑖 , 𝛿 𝑗) ≜ ∀ 𝑐ℎ ∈ dom(𝛿𝑖) ∩ dom(𝛿 𝑗),

∀ (𝑡𝑠 , 𝑡𝑒) ∈ 𝛿𝑖 (𝑐ℎ), (𝑡𝑠 ′, 𝑡𝑒 ′) ∈ 𝛿 𝑗 (𝑐ℎ) s.t.
[𝑡𝑠 , 𝑡𝑒) ∩ [𝑡𝑠 ′, 𝑡𝑒 ′) = ∅

∀𝑖, ⟨𝑄𝑖 , 𝜎, 𝑡
𝑞 , 𝑡𝑐 ⟩ →∗ ⟨skipQ , (𝛾𝑖 , 𝛿𝑖 , 𝜋𝑖), 𝑡𝑞𝑖 , 𝑡𝑐𝑖 ⟩ 𝑡

𝑞
max = max𝑖 𝑡

𝑞

𝑖
∀𝑖 ≠ 𝑗, dom(𝛿𝑖) ∩ dom(𝛿 𝑗) = ∅ ∨ no-conflict-Qpar (𝛿𝑖 , 𝛿 𝑗)

Γ ⊢ ⟨parQ {𝑄1 ∥ · · · ∥ 𝑄𝑛 }, 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ → ⟨skipQ , (
⋃

𝑖 𝛾𝑖 ,
⋃

𝑖 𝛿𝑖 ,
⋃

𝑖 𝜋𝑖), 𝑡
𝑞
max, 𝑡𝑐

′ ⟩
Measurement.

𝜋 (𝑝measure) = pulse(𝑠, 𝑎,𝑑, 𝜙,𝜔) meas[𝑖] ⇓ 𝑏

⟨play(𝑐ℎ, 𝑝measure) ;𝑥 := meas[𝑖], 𝜎, 𝑡𝑞 , 𝑡𝑐 ⟩ →∗ ⟨skip, (𝛾 [𝑥 ↦→ 𝑏], 𝛿 ′, 𝜋),max(𝑡𝑞 ′, 𝑡𝑐 ′), 𝑡𝑐 ′ ⟩
where: 𝑡𝑞 ′ = 𝑡𝑞 + 𝑑, 𝛿 ′ = 𝛿 ∪ { (𝑐ℎ, 𝑝measure, 𝑡

𝑞 , 𝑡𝑞 ′) }, meas[𝑖] = decoded measurement result of channel 𝑖

Fig. 2. Operational semantics of the DSL.

to the cycle time on the control side, the hardware clock will be held and wait for returning
pulses to be fetched by ADCs before incrementing the clock, to ensure concurrency.

4 Examples
We run two experiments, Rabi oscillation and quantum tomography, to display two exam-
ples of our DSL, compile and execute them on the emulator.

Rabi oscillation. In quantum hardware, two energy levels are chosen as the qubit states.
Coherent control between these states—essential for quantum operations—is achieved by

A Pulse-Level DSL for Real-TimeQuantum Control with Hardware Compilation and Emulation 5

applying an oscillatory drive resonant with their energy splitting [13], a process known as
Rabi oscillation. In our experiment, we generate this drive (corresponding to the 𝜎𝑥 term
in the Hamiltonian in Section 3) using cosine pulses from high-speed DACs andmeasure the
response through DACs and ADCs on the same chip. By varying the drive duration via our
DSL, we observe coherent state population oscillations on the emulator, consistent with the
expected Rabi dynamics. Figure 3b shows the results, and the corresponding DSL program
is in Figure 3a.

Quantum tomography. Measuring only the population of a quantum state does not
provide complete information about the state. For instance, the states |0⟩ + |1⟩ and |0⟩ − |1⟩
yield identical population statistics despite having opposite relative phases. Moreover,
decoherence can transform a pure state into a mixed state—indistinguishable from a pure
state by population measurements alone. To fully characterize an unknown state, quantum
state tomography is employed, in which the state is repeatedly prepared and measured in
a complete set of orthogonal bases [21].
In our experiment, we generate a qubit state by applying a random Rabi-drive duration,

then perform quantum state tomography pulse sequence via our DSL. Basis changes are
implemented by applying single-qubit 𝜎𝑥 and 𝜎𝑦 rotations using the same DACs that drive
the Rabi oscillations. Figure 3c shows the reconstructed state obtained from tomography.

1 #include "pulsedsl.h"

2
3 int main() {

4 Init (4);

5
6 PulseParams p_m = {

7 .shape = CONSTANT ,

8 .amplitude = 0x7ff0 ,

9 .duration = 50,

10 .phase = PHASE_PI (0.5),

11 .frequency = FREQ_GHZ (0.1) };

12
13 for (int i = 1; i <= 20; i++) {

14 PulseParams p_dx = {

15 .shape = CONSTANT ,

16 .amplitude = 0x7ff0 ,

17 .duration = i,

18 .phase = PHASE_PI (0.0),

19 .frequency = FREQ_GHZ (0.5) };

20
21 Play(p_dx , 1);

22 Measure(p_m , 1);

23 }

24 return 0;

25 }

(a) DSL program used for the Rabi oscillations

(b) Rabi oscillations

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Re Column 0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4

Re
 Ro

w

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Va
lu

e

Real part

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Im Column 0.0

0.2
0.4

0.6
0.8

1.0
1.2

1.4

Im
 Ro

w

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Va
lu

e

Imaginary part
Density matrix

(c) Tomography at cycle time 4

Fig. 3. Programs in our language and emulation results.

6 Yu-Hsuan Wu, Yue Shi, Junyi Liu, and Yuxiang Peng

References
[1] MohammedAbuGhanem. 2025. IBMQuantumComputers: Evolution, Performance, and Future Directions.

The Journal of Supercomputing 81 (2025), 687. doi:10.1007/s11227-025-07047-7
[2] Google Quantum AI and Collaborators. 2025. Quantum Error Correction Below the Surface Code

Threshold. Nature 638 (2025), 920–926. doi:10.1038/s41586-024-08449-y
[3] Thomas Alexander, Naoki Kanazawa, Daniel J Egger, Lauren Capelluto, Christopher J Wood, Ali Javadi-

Abhari, and David C McKay. 2020. Qiskit pulse: programming quantum computers through the cloud
with pulses. Quantum Science and Technology 5, 4 (Aug. 2020), 044006. doi:10.1088/2058-9565/aba404

[4] Susan M. Clark, Daniel Lobser, Melissa C. Revelle, Christopher G. Yale, David Bossert, Ashlyn D. Burch,
Matthew N. Chow, Craig W. Hogle, Megan Ivory, Jessica Pehr, Bradley Salzbrenner, Daniel Stick, William
Sweatt, Joshua M. Wilson, Edward Winrow, and Peter Maunz. 2021. Engineering the Quantum Scientific
Computing Open User Testbed. IEEE Transactions on Quantum Engineering 2 (2021), 1–32. doi:10.1109/
TQE.2021.3096480

[5] Eric Dennis, Alexei Y. Kitaev, Andrew Landahl, and John Preskill. 2002. Topological quantum memory. J.
Math. Phys. 43, 9 (2002), 4452–4505. doi:10.1063/1.1499754

[6] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-
Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. 2021. Qibo: a framework for
quantum simulation with hardware acceleration. Quantum Science and Technology 7, 1 (dec 2021), 015018.
doi:10.1088/2058-9565/ac39f5

[7] I. M. Georgescu, S. Ashhab, and Franco Nori. 2014. Quantum simulation. Rev. Mod. Phys. 86 (Mar 2014),
153–185. Issue 1. doi:10.1103/RevModPhys.86.153

[8] Daniel Gottesman. 1997. Stabilizer Codes and Quantum Error Correction. Ph.D. thesis. California Institute
of Technology, Pasadena, CA.

[9] Boxi Li, Shahnawaz Ahmed, Sidhant Saraogi, Neill Lambert, Franco Nori, Alexander Pitchford, and
Nathan Shammah. 2022. Pulse-level noisy quantum circuits with QuTiP. Quantum 6 (Jan. 2022), 630.
doi:10.22331/q-2022-01-24-630

[10] Junyi Liu, Yi Lee, Haowei Deng, Connor Clayton, Gengzhi Yang, and Xiaodi Wu. 2025. RISC-Q: A Genera-
tor for Real-Time Quantum Control System-on-Chips Compatible with RISC-V. arXiv:2505.14902 [cs.AR]
https://arxiv.org/abs/2505.14902

[11] Guang Hao Low and Isaac L. Chuang. 2019. Hamiltonian Simulation by Qubitization. Quantum 3 (July
2019), 163. doi:10.22331/q-2019-07-12-163

[12] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev Bishop, Jiayin Chen, Jerry M.
Chow, Antonio D. Córcoles, Daniel Egger, Stefan Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari,
Diego Moreda, Paul Nation, Brent Paulovicks, Erick Winston, Christopher J. Wood, James Wootton,
and Jay M. Gambetta. 2018. Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments.
arXiv:1809.03452 [quant-ph] https://arxiv.org/abs/1809.03452

[13] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. 2001. Rabi Oscillations in a Josephson-Junction Charge
Two-Level System. Phys. Rev. Lett. 87 (Nov 2001), 246601. Issue 24. doi:10.1103/PhysRevLett.87.246601

[14] Thien Nguyen and Alexander McCaskey. 2022. Enabling Pulse-Level Programming, Compilation, and
Execution in XACC. IEEE Trans. Comput. 71, 3 (March 2022), 547–558. doi:10.1109/TC.2021.3057166

[15] Timothy Proctor, Melissa Revelle, Erik Nielsen, et al. 2020. Detecting and tracking drift in quantum
information processors. Nature Communications 11 (2020), 5396. doi:10.1038/s41467-020-19074-4

[16] quil-lang. 2021. Quil. https://github.com/quil-lang/quil
[17] Peter W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceed-

ings 35th Annual Symposium on Foundations of Computer Science. 124–134. doi:10.1109/SFCS.1994.365700
[18] Peter W. Shor. 1995. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52

(Oct 1995), R2493–R2496. Issue 4. doi:10.1103/PhysRevA.52.R2493
[19] PeterW. Shor. 1996. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations

of Computer Science. 56–65. doi:10.1109/SFCS.1996.548464
[20] Wilson Snyder. 2025. Verilator v5.032. https://www.veripool.org/wiki/verilator.

https://doi.org/10.1007/s11227-025-07047-7
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.1088/2058-9565/aba404
https://doi.org/10.1109/TQE.2021.3096480
https://doi.org/10.1109/TQE.2021.3096480
https://doi.org/10.1063/1.1499754
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.22331/q-2022-01-24-630
https://arxiv.org/abs/2505.14902
https://arxiv.org/abs/2505.14902
https://doi.org/10.22331/q-2019-07-12-163
https://arxiv.org/abs/1809.03452
https://arxiv.org/abs/1809.03452
https://doi.org/10.1103/PhysRevLett.87.246601
https://doi.org/10.1109/TC.2021.3057166
https://doi.org/10.1038/s41467-020-19074-4
https://github.com/quil-lang/quil
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1109/SFCS.1996.548464
https://www.veripool.org/wiki/verilator

A Pulse-Level DSL for Real-TimeQuantum Control with Hardware Compilation and Emulation 7

[21] Matthias Steffen, M. Ansmann, R. McDermott, N. Katz, Radoslaw C. Bialczak, Erik Lucero, Matthew
Neeley, E. M. Weig, A. N. Cleland, and John M. Martinis. 2006. State Tomography of Capacitively Shunted
Phase Qubits with High Fidelity. Phys. Rev. Lett. 97 (Aug 2006), 050502. Issue 5. doi:10.1103/PhysRevLett.
97.050502

https://doi.org/10.1103/PhysRevLett.97.050502
https://doi.org/10.1103/PhysRevLett.97.050502

	Abstract
	1 Introduction
	2 Language and Compiler
	3 Emulator
	4 Examples
	References

